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ABSTRACT
Kleinberg’s HITS algorithm, a method of link analysis, uses
the link structure of a network of webpages to assign au-
thority and hub weights to each page. These weights are
used to rank sources on a particular topic. We have found
that certain tree-like web structures can lead the HITS al-
gorithm to return either arbitrary or non-intuitive results.
We give a characterization of these web structures. We
present two modifications to the adjacency matrix input to
the HITS algorithm. Exponentiated Input, our first mod-
ification, includes information not only on direct links but
also on longer paths between pages. It resolves both limita-
tions mentioned above. Usage Weighted Input, our second
modification, weights links according to how often they were
followed by users in a given time period; it incorporates user
feedback without requiring direct user querying.
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1. INTRODUCTION
Kleinberg’s HITS algorithm, “Hypertext Induced Topic

Selection”, is a standard algorithm of Link Analysis [3, 4].
It ranks web search results. The premise of the HITS al-
gorithm is that a web page serves two purposes: to provide
information and to provide links relevant to a topic. This
gives two ways to categorize a web page. A web page is an
authority on a topic if it provides good information, and it is
a hub if it provides links to good authorities. The HITS al-
gorithm is an iterative algorithm developed to quantify each
page’s value as a hub and an authority.

2. KLEINBERG’S HITS ALGORITHM
Consider a directed graph G on [n] with adjacency matrix

M . Let ~hk be the vector whose ith entry hk(i) is the hub
weight assigned to the ith node at iteration k. Similarly let
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~ak be the vector of authority weights. Initialize these vectors
so that h0(i) = a0(i) = 1/n for all i (other initializations
can be used). In the kth iteration, compute the new hub
weight hk(i) by summing the authority weights of the nodes
j to which node i points: set hk(i) =

∑
j ak−1(j). Similarly,

update the authority weights by setting ak(i) =
∑
j hk−1(j),

where the sum runs over the nodes j that point to node i.
Then normalize so that

∑
i ak(i) =

∑
i hk(i) = 1. In linear

algebra terms, we are computing ~hk = ψkM~ak−1 and ~ak =

φkM
T~hk−1, where ψk and φk are the normalization factors.

Combining these formulas, we see that

~hk = ψkφk−1MMT~hk−2, ~ak = φkψk−1M
TM~ak−2. (1)

The eigenvalues of the real, non-negative, symmetric ma-
trix MTM are real and non-negative, so iteration of the
authority [resp. hub] weight formula in (1) converges to
an eigenvector of the dominant eigenvalue of MTM [resp.
MMT ].

2.1 Limitations of the HITS algorithm
The HITS algorithm does not always behave as expected.

First, if the dominant eigenvalue of MTM is repeated, the
HITS algorithm converges to an authority vector which is
not unique, but depends on the initial seed ~a0. The au-
thority vector can be any normalized vector in the domi-
nant eigenvalue’s eigenspace. For example, for a two-level
reversed binary tree B whose edges point upwards towards
the root, the eigenvalues of MTM are 2, 2, 2, 0, 0, 0, and 0.
The authority weights for the three upper nodes can be any
three positive numbers that sum to 1. Second, the HITS
algorithm yields zero authority weights for apparently im-
portant nodes of certain graphs. For example, if a leaf is
added at the left middle-level node of B, then both the hub
and authority weights are zero for the root and for the right
half of B. We call these limitations non-uniqueness and
nil-weighting, respectively.

We have characterized the graphs G on which the HITS
algorithm is non-unique or nil-weighted. Consider an undi-
rected graph G′ on [n] where {i, j} is an edge of G′ if there
is a k such that (k, i) and (k, j) are directed edges of G. The
HITS algorithm is non-unique or nil-weighted on G if and
only if there exist i, j with positive in-degree in G such that
i and j are in distinct components of G′.

3. EXPONENTIATED INPUT TO HITS
The key idea is to replace the adjacency matrix used by

the HITS algorithm with an exponentiated matrix, which



contains direct information on paths of length 2 or more in
the graph. Namely, we replace M with the ‘Taylor series’
matrix

eM − I = M +M2/2! +M3/3! + · · ·+Mm/m! + · · · . (2)

Recall that the number of paths of length m from node i to
node j is given by the i,jth entry of Mm. The scaling factors
1/m! assign less importance to longer paths, and could be
varied somewhat without losing convergence.

Our version of the HITS algorithm with Exponentiated
Input now updates the authority vector by multiplying by
(eM − I)T (eM − I) instead of MTM . We have proved that
this modification prevents non-uniqueness and nil-weighting.

Theorem 1. If G is a weakly connected graph, then the
matrix (eM−I)T (eM−I) has a simple dominant eigenvalue,
whose eigenvector has only positive entries. Therefore the
HITS algorithm with Exponentiated Input applied to G con-
verges to a unique (normalized) eigenvector, with positive
entries; in particular the algorithm cannot be non-unique or
nil-weighted on weakly connected graphs.

We prove Theorem 1 by showing that if G is weakly con-
nected, then the matrix (eM−I)T (eM−I) cannot be written
in block lower triangular form. (A directed graph is weakly
connected if it is connected when the directions of the edges
are ignored.) The Perron-Frobenius theorem [2, p.53] then
implies that (eM−I)T (eM−I) has a simple dominant eigen-
value, and that the entries of the corresponding eigenvector
are all positive.

For the two-level binary treeB, Exponentiated Input yields
(unique!) authority weights of 1/2 for the root, 1/4 for the
mid-level nodes, and 0 for the lowest level nodes, and hub
weights of 0 for the root and 1/6 for the other nodes. When
one extra leaf is added at the lower level, Exponentiated
Input yields (non-nil-weighted!) authority and hub weights
which give the two-leaf middle-level node only a little less
authority than the three-leaf one, and give all nodes except
the root non-zero hub weight.

Note: We have found a sequence of graphs where the gap
between the two largest eigenvalues of (eM − I)T (eM − I)
seems to approach zero. Depending on arithmetic precision,
this may mimic the non-uniqueness problem.

4. USAGE WEIGHTED INPUT TO HITS
Usage Weighted Input, our second modification of the ad-

jacency matrix, replaces the adjacency matrix with a link
matrix M ′ which weights connections between nodes (pages)
based on the usage data from webserver logs of traffic on the
website. We initialize the link matrix to 0, and then incre-
ment the link from node i to node j every time a user travels
from i to j. (Notice that the resulting input matrix need
not mirror the website structure, since some hyperlinks may
never be followed, while users may navigate directly between
pages that are not hyperlinked.) The effect is similar to that
of lifting by gradient ascent [1] of the authority weight of a
node, but does not require any direct querying of users.

When the HITS algorithm runs using M ′ in place of M ,
the information affecting the rate of change of the authority
weight ajk+1 of node j is the set of authority weights aik of
all nodes at the previous iteration, together with the link
matrix entries mlj for all links pointing to node j. Since
these link matrix entries are larger if node j is visited more

often, in each iteration the most frequently followed links
play a larger role in determining new authority weights.

5. PRELIMINARY RESULTS
On the website www.ehnc.com (about 360 pages in Decem-

ber 1999), both modifications found more intuitively reason-
able pages as the best hubs and authorities than the original
HITS algorithm did. Only Usage Weighted Input ranked the
root page as the best hub.

6. CONCLUSIONS
We have characterized the graphs on which the HITS al-

gorithm produces ambiguous results and/or unreasonably
assigns zero weights to parts of the graph. We have proved
(Theorem 1) that our Exponential Input modification pre-
vents these occurrences. In our preliminary experiments,
Usage Weighted Input yielded even more satisfactory re-
sults than Exponentiated Input in finding the best hubs and
authorities on a specific company website. Both input mod-
ifications were more satisfactory on this measure than the
original binary adjacency matrix input.

One could also run the HITS algorithm on an exponen-
tiated version of a usage weighted adjacency matrix for a
website. This would combine the effectiveness of exponen-
tiation, in incorporating indirect paths, with information
on how users actually traversed the website. This analysis
might be the most accurate indicator of the pages users have
determined to be the best hubs and authorities on a website.
We expect that this is where the advantages of the HITS al-
gorithm with Exponentiated Input might be most visible,
because the usage data is likely to have tree-like structure
since users rarely follow the “back to homepage” links, and
trees are among the graphs on which the HITS algorithm is
badly behaved.
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